Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Versatile Functional Poly(3-hexylthiophene) for Hybrid Particles Synthesis by the Grafting Onto Technique: Core@Shell ZnO Nanorods

Identifieur interne : 000003 ( Main/Repository ); précédent : 000002; suivant : 000004

Versatile Functional Poly(3-hexylthiophene) for Hybrid Particles Synthesis by the Grafting Onto Technique: Core@Shell ZnO Nanorods

Auteurs : RBID : Pascal:14-0076205

Descripteurs français

English descriptors

Abstract

We demonstrate an efficient strategy to anchor poly(3-hexylthiophene) (P3HT) onto zinc oxide (ZnO) surfaces. Synthesis of a novel triethoxysilane-terminated regioregular P3HT is herein reported and supported by thorough characterization. Three triethoxysilane-terminated P3HTs of different molar masses were prepared via a hydrosilylation reaction from allyl-terminated P3HT. MALDI-TOF and 1H NMR were performed to characterize the polymer and show that around 80% of the chains are end-functionalized. These polymers were then grafted onto the ZnO nanorods to create a macromolecular self-assembled monolayer. This versatile technique could be subsequently applied to different metal oxide surfaces, such as silicon, titanium, or indium-tin oxide, and represents a new one-pot strategy based on triethoxysilane coupling reaction. Importantly, the influence of the molar mass on the grafting density and the polymer shell thickness was studied via thermo gravimetric analysis and transmission electron microscopy. The optical properties of the hybrid materials were determined by UV-visible absorption and photoluminescence to show a quenching effect of P3HT fluorescence by ZnO when grafted. This electronic transfer associated with an improved miscibility of the ZnO@P3HT, makes these hybrid materials suitable candidates for photovoltaic applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0076205

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Versatile Functional Poly(3-hexylthiophene) for Hybrid Particles Synthesis by the Grafting Onto Technique: Core@Shell ZnO Nanorods</title>
<author>
<name sortKey="Awada, Hussein" uniqKey="Awada H">Hussein Awada</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IPREM CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de L'Adour, Hélioparc, 2 avenue President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Medlej, Hussein" uniqKey="Medlej H">Hussein Medlej</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IPREM CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de L'Adour, Hélioparc, 2 avenue President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blanc, Sylvie" uniqKey="Blanc S">Sylvie Blanc</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IPREM CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de L'Adour, Hélioparc, 2 avenue President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Delville, Marie Helene" uniqKey="Delville M">Marie-Hélène Delville</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IPREM CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de L'Adour, Hélioparc, 2 avenue President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hiorns, Roger C" uniqKey="Hiorns R">Roger C. Hiorns</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IPREM CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de L'Adour, Hélioparc, 2 avenue President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bousquet, Antoine" uniqKey="Bousquet A">Antoine Bousquet</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IPREM CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de L'Adour, Hélioparc, 2 avenue President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dagron Lartigau, Christine" uniqKey="Dagron Lartigau C">Christine Dagron-Lartigau</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IPREM CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de L'Adour, Hélioparc, 2 avenue President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Billon, Laurent" uniqKey="Billon L">Laurent Billon</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>IPREM CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de L'Adour, Hélioparc, 2 avenue President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0076205</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0076205 INIST</idno>
<idno type="RBID">Pascal:14-0076205</idno>
<idno type="wicri:Area/Main/Corpus">000120</idno>
<idno type="wicri:Area/Main/Repository">000003</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0887-624X</idno>
<title level="j" type="abbreviated">J. polym. sci., Part A, Polym. chem.</title>
<title level="j" type="main">Journal of polymer science. Part A. Polymer chemistry</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectrum</term>
<term>Aromatic polymer</term>
<term>Chemical coupling</term>
<term>Chemical modification</term>
<term>Complex catalyst polymerization</term>
<term>Conjugated polymer</term>
<term>End group</term>
<term>Experimental study</term>
<term>Graft polymers</term>
<term>Grignard reagent</term>
<term>Head to tail polymer</term>
<term>Hydrosilylation</term>
<term>Metathesis polymerization</term>
<term>Morphology</term>
<term>Nanorod</term>
<term>Particle suspension</term>
<term>Photoluminescence</term>
<term>Preparation</term>
<term>Surface reaction</term>
<term>Thiophene derivative polymer</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Thiophène dérivé polymère</term>
<term>Polymère aromatique</term>
<term>Polymère conjugué</term>
<term>Polymère tête à queue</term>
<term>Polymère greffé</term>
<term>Nanobâtonnet</term>
<term>Oxyde de zinc</term>
<term>Préparation</term>
<term>Polymérisation catalyseur complexe</term>
<term>Polymérisation métathèse</term>
<term>Réactif Grignard</term>
<term>Modification chimique</term>
<term>Groupe terminal</term>
<term>Hydrosilylation</term>
<term>Copulation chimique</term>
<term>Réaction surface</term>
<term>Morphologie</term>
<term>Suspension particule</term>
<term>Spectre absorption</term>
<term>Photoluminescence</term>
<term>Etude expérimentale</term>
<term>Thiophène(3-hexyl) polymère</term>
<term>Groupe allyle</term>
<term>Polymère greffé nanobâtonnet</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We demonstrate an efficient strategy to anchor poly(3-hexylthiophene) (P3HT) onto zinc oxide (ZnO) surfaces. Synthesis of a novel triethoxysilane-terminated regioregular P3HT is herein reported and supported by thorough characterization. Three triethoxysilane-terminated P3HTs of different molar masses were prepared via a hydrosilylation reaction from allyl-terminated P3HT. MALDI-TOF and
<sup>1</sup>
H NMR were performed to characterize the polymer and show that around 80% of the chains are end-functionalized. These polymers were then grafted onto the ZnO nanorods to create a macromolecular self-assembled monolayer. This versatile technique could be subsequently applied to different metal oxide surfaces, such as silicon, titanium, or indium-tin oxide, and represents a new one-pot strategy based on triethoxysilane coupling reaction. Importantly, the influence of the molar mass on the grafting density and the polymer shell thickness was studied via thermo gravimetric analysis and transmission electron microscopy. The optical properties of the hybrid materials were determined by UV-visible absorption and photoluminescence to show a quenching effect of P3HT fluorescence by ZnO when grafted. This electronic transfer associated with an improved miscibility of the ZnO@P3HT, makes these hybrid materials suitable candidates for photovoltaic applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0887-624X</s0>
</fA01>
<fA02 i1="01">
<s0>JPLCAT</s0>
</fA02>
<fA03 i2="1">
<s0>J. polym. sci., Part A, Polym. chem.</s0>
</fA03>
<fA05>
<s2>52</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Versatile Functional Poly(3-hexylthiophene) for Hybrid Particles Synthesis by the Grafting Onto Technique: Core@Shell ZnO Nanorods</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AWADA (Hussein)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MEDLEJ (Hussein)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BLANC (Sylvie)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DELVILLE (Marie-Hélène)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HIORNS (Roger C.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BOUSQUET (Antoine)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DAGRON-LARTIGAU (Christine)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BILLON (Laurent)</s1>
</fA11>
<fA14 i1="01">
<s1>IPREM CNRS-UMR 5254, Equipe de Physique et Chimie des Polymères, Université de Pau et des Pays de L'Adour, Hélioparc, 2 avenue President Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>30-38</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6199A1</s2>
<s5>354000505776760050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>14-0076205</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of polymer science. Part A. Polymer chemistry</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fA99>
<s0>1 p.1/4 ref. et notes</s0>
</fA99>
<fC01 i1="01" l="ENG">
<s0>We demonstrate an efficient strategy to anchor poly(3-hexylthiophene) (P3HT) onto zinc oxide (ZnO) surfaces. Synthesis of a novel triethoxysilane-terminated regioregular P3HT is herein reported and supported by thorough characterization. Three triethoxysilane-terminated P3HTs of different molar masses were prepared via a hydrosilylation reaction from allyl-terminated P3HT. MALDI-TOF and
<sup>1</sup>
H NMR were performed to characterize the polymer and show that around 80% of the chains are end-functionalized. These polymers were then grafted onto the ZnO nanorods to create a macromolecular self-assembled monolayer. This versatile technique could be subsequently applied to different metal oxide surfaces, such as silicon, titanium, or indium-tin oxide, and represents a new one-pot strategy based on triethoxysilane coupling reaction. Importantly, the influence of the molar mass on the grafting density and the polymer shell thickness was studied via thermo gravimetric analysis and transmission electron microscopy. The optical properties of the hybrid materials were determined by UV-visible absorption and photoluminescence to show a quenching effect of P3HT fluorescence by ZnO when grafted. This electronic transfer associated with an improved miscibility of the ZnO@P3HT, makes these hybrid materials suitable candidates for photovoltaic applications.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D09D02E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Polymère aromatique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Aromatic polymer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Polímero aromático</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polymère conjugué</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Conjugated polymer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Polímero conjugado</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Polymère tête à queue</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Head to tail polymer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Polímero cabeza a cola</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Polymère greffé</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Graft polymers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Nanobâtonnet</s0>
<s1>SUB</s1>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nanorod</s0>
<s1>SUB</s1>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Nanopalito</s0>
<s1>SUB</s1>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s1>SUB</s1>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s1>SUB</s1>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s1>SUB</s1>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Préparation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Preparation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Preparación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Polymérisation catalyseur complexe</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Complex catalyst polymerization</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Polimerización catalizador complejo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Polymérisation métathèse</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Metathesis polymerization</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Polimerización metátesis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Réactif Grignard</s0>
<s1>ENT</s1>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Grignard reagent</s0>
<s1>ENT</s1>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Reactivo Grignard</s0>
<s1>ENT</s1>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Modification chimique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Chemical modification</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Modificación química</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Groupe terminal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>End group</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Grupo terminal</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Hydrosilylation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Hydrosilylation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Hidrosililación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Copulation chimique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Chemical coupling</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Copulación química</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Réaction surface</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Surface reaction</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Reacción superficie</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Suspension particule</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Particle suspension</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Suspensión partícula</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Spectre absorption</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Absorption spectrum</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Espectro de absorción</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Photoluminescence</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Photoluminescence</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Fotoluminiscencia</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Thiophène(3-hexyl) polymère</s0>
<s4>INC</s4>
<s5>41</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Groupe allyle</s0>
<s1>ENT</s1>
<s4>INC</s4>
<s5>42</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Polymère greffé nanobâtonnet</s0>
<s4>INC</s4>
<s5>43</s5>
</fC03>
<fN21>
<s1>104</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0076205
   |texte=   Versatile Functional Poly(3-hexylthiophene) for Hybrid Particles Synthesis by the Grafting Onto Technique: Core@Shell ZnO Nanorods
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024